Solving A System Of Equations: Finding (xyz)^2

by Blender 47 views

Hey guys! Today, we're diving into a fun math problem: solving a system of equations using the echelon method and then figuring out the value of (xyz)2{ (xyz)^2 }. Buckle up, it's gonna be a ride!

Setting Up the Equations

First, let's lay out the system of equations we need to solve:

{βˆ’2xβˆ’4yβˆ’5z=20βˆ’6xβˆ’2yβˆ’3z=βˆ’26xβˆ’y+5z=βˆ’13{ \begin{cases} -2x - 4y - 5z = 20 \\ -6x - 2y - 3z = -2 \\ 6x - y + 5z = -13 \end{cases} }

Our mission is to find the values of x, y, and z that satisfy all three equations. Once we have those, we'll calculate (xyz)2{ (xyz)^2 }.

The Echelon Method: Step-by-Step

The echelon method, also known as Gaussian elimination, is a systematic way to solve systems of linear equations. The main idea is to transform the system into an upper triangular form, which makes it easier to solve. Let's get started!

Step 1: Eliminating x from the Second and Third Equations

First, we want to eliminate x from the second and third equations. We can do this by performing row operations. Let's start by eliminating x from the second equation. Multiply the first equation by -3 and add it to the second equation:

  • Original second equation: βˆ’6xβˆ’2yβˆ’3z=βˆ’2{ -6x - 2y - 3z = -2 }
  • -3 times the first equation: βˆ’3(βˆ’2xβˆ’4yβˆ’5z)=βˆ’3(20)β‡’6x+12y+15z=βˆ’60{ -3(-2x - 4y - 5z) = -3(20) \Rightarrow 6x + 12y + 15z = -60 }

Adding these two equations gives us:

(βˆ’6xβˆ’2yβˆ’3z)+(6x+12y+15z)=βˆ’2+(βˆ’60)β‡’10y+12z=βˆ’62{ (-6x - 2y - 3z) + (6x + 12y + 15z) = -2 + (-60) \Rightarrow 10y + 12z = -62 }

So, our new second equation is:

10y+12z=βˆ’62{ 10y + 12z = -62 }

Now, let's eliminate x from the third equation. To do this, simply add the first equation to the third equation:

  • Original third equation: 6xβˆ’y+5z=βˆ’13{ 6x - y + 5z = -13 }
  • First equation: βˆ’2xβˆ’4yβˆ’5z=20{ -2x - 4y - 5z = 20 }

Adding these two equations gives us:

(6xβˆ’y+5z)+(βˆ’2xβˆ’4yβˆ’5z)=βˆ’13+20β‡’4xβˆ’5y=7{ (6x - y + 5z) + (-2x - 4y - 5z) = -13 + 20 \Rightarrow 4x - 5y = 7 }

So, our new third equation is:

βˆ’5y=7{ -5y = 7 }

Step 2: Simplifying the System

Now our system looks like this:

{βˆ’2xβˆ’4yβˆ’5z=2010y+12z=βˆ’62βˆ’5y=7{ \begin{cases} -2x - 4y - 5z = 20 \\ 10y + 12z = -62 \\ -5y = 7 \end{cases} }

We can simplify the second equation by dividing by 2:

5y+6z=βˆ’31{ 5y + 6z = -31 }

So the system becomes:

{βˆ’2xβˆ’4yβˆ’5z=205y+6z=βˆ’31βˆ’5y=7{ \begin{cases} -2x - 4y - 5z = 20 \\ 5y + 6z = -31 \\ -5y = 7 \end{cases} }

Step 3: Solving for y

From the third equation, we can directly solve for y:

βˆ’5y=7β‡’y=βˆ’75{ -5y = 7 \Rightarrow y = -\frac{7}{5} }

Step 4: Solving for z

Now that we have y, we can plug it into the second equation to solve for z:

5y+6z=βˆ’31β‡’5(βˆ’75)+6z=βˆ’31β‡’βˆ’7+6z=βˆ’31β‡’6z=βˆ’24β‡’z=βˆ’4{ 5y + 6z = -31 \Rightarrow 5(-\frac{7}{5}) + 6z = -31 \Rightarrow -7 + 6z = -31 \Rightarrow 6z = -24 \Rightarrow z = -4 }

Step 5: Solving for x

Finally, we can plug the values of y and z into the first equation to solve for x:

βˆ’2xβˆ’4yβˆ’5z=20β‡’βˆ’2xβˆ’4(βˆ’75)βˆ’5(βˆ’4)=20β‡’βˆ’2x+285+20=20β‡’βˆ’2x=βˆ’285β‡’x=145{ -2x - 4y - 5z = 20 \Rightarrow -2x - 4(-\frac{7}{5}) - 5(-4) = 20 \Rightarrow -2x + \frac{28}{5} + 20 = 20 \Rightarrow -2x = -\frac{28}{5} \Rightarrow x = \frac{14}{5} }

So, we have:

x=145,y=βˆ’75,z=βˆ’4{ x = \frac{14}{5}, \quad y = -\frac{7}{5}, \quad z = -4 }

Calculating (xyz)2{ (xyz)^2 }

Now that we have the values of x, y, and z, we can calculate (xyz)2{ (xyz)^2 }:

(xyz)2=(145β‹…βˆ’75β‹…βˆ’4)2=(14β‹…7β‹…425)2=(39225)2=153664625=245.8624{ (xyz)^2 = (\frac{14}{5} \cdot -\frac{7}{5} \cdot -4)^2 = (\frac{14 \cdot 7 \cdot 4}{25})^2 = (\frac{392}{25})^2 = \frac{153664}{625} = 245.8624 }

Round to Integer Value

The problem gives options that are integers. So, let's verify our calculations and consider if there may be a simpler approach that leads to an integer solution. If a mistake was made in the calculation, we should correct it to align the result with one of the options provided.

Given the system:

{βˆ’2xβˆ’4yβˆ’5z=20βˆ’6xβˆ’2yβˆ’3z=βˆ’26xβˆ’y+5z=βˆ’13{ \begin{cases} -2x - 4y - 5z = 20 \\ -6x - 2y - 3z = -2 \\ 6x - y + 5z = -13 \end{cases} }

And the values found:

x=145,y=βˆ’75,z=βˆ’4{ x = \frac{14}{5}, \quad y = -\frac{7}{5}, \quad z = -4 }

Let's substitute these values back into the original equations to check for correctness:

Equation 1:

βˆ’2(145)βˆ’4(βˆ’75)βˆ’5(βˆ’4)=βˆ’285+285+20=20{ -2(\frac{14}{5}) - 4(-\frac{7}{5}) - 5(-4) = -\frac{28}{5} + \frac{28}{5} + 20 = 20 }

Equation 2:

βˆ’6(145)βˆ’2(βˆ’75)βˆ’3(βˆ’4)=βˆ’845+145+12=βˆ’705+12=βˆ’14+12=βˆ’2{ -6(\frac{14}{5}) - 2(-\frac{7}{5}) - 3(-4) = -\frac{84}{5} + \frac{14}{5} + 12 = -\frac{70}{5} + 12 = -14 + 12 = -2 }

Equation 3:

6(145)βˆ’(βˆ’75)+5(βˆ’4)=845+75βˆ’20=915βˆ’20=915βˆ’1005=βˆ’95{ 6(\frac{14}{5}) - (-\frac{7}{5}) + 5(-4) = \frac{84}{5} + \frac{7}{5} - 20 = \frac{91}{5} - 20 = \frac{91}{5} - \frac{100}{5} = -\frac{9}{5} }

There appears to be a mistake. The values do not correctly satisfy Equation 3. Let's recalculate using a different approach.

We have the system:

{βˆ’2xβˆ’4yβˆ’5z=20βˆ’6xβˆ’2yβˆ’3z=βˆ’26xβˆ’y+5z=βˆ’13{ \begin{cases} -2x - 4y - 5z = 20 \\ -6x - 2y - 3z = -2 \\ 6x - y + 5z = -13 \end{cases} }

Add equation 2 and 3:

(βˆ’6xβˆ’2yβˆ’3z)+(6xβˆ’y+5z)=βˆ’2βˆ’13β‡’βˆ’3y+2z=βˆ’15{ (-6x - 2y - 3z) + (6x - y + 5z) = -2 - 13 \Rightarrow -3y + 2z = -15 }

Multiply equation 1 by 3 and subtract equation 2:

3(βˆ’2xβˆ’4yβˆ’5z)βˆ’(βˆ’6xβˆ’2yβˆ’3z)=3(20)βˆ’(βˆ’2)β‡’βˆ’6xβˆ’12yβˆ’15z+6x+2y+3z=60+2β‡’βˆ’10yβˆ’12z=62{ 3(-2x - 4y - 5z) - (-6x - 2y - 3z) = 3(20) - (-2) \Rightarrow -6x - 12y - 15z + 6x + 2y + 3z = 60 + 2 \Rightarrow -10y - 12z = 62 }

Divide by -2:

5y+6z=βˆ’31{ 5y + 6z = -31 }

Now we have:

{βˆ’3y+2z=βˆ’155y+6z=βˆ’31{ \begin{cases} -3y + 2z = -15 \\ 5y + 6z = -31 \end{cases} }

Multiply the first equation by 3:

βˆ’9y+6z=βˆ’45{ -9y + 6z = -45 }

Subtract this from the second equation:

(5y+6z)βˆ’(βˆ’9y+6z)=βˆ’31βˆ’(βˆ’45)β‡’14y=14β‡’y=1{ (5y + 6z) - (-9y + 6z) = -31 - (-45) \Rightarrow 14y = 14 \Rightarrow y = 1 }

Now substitute y = 1 into βˆ’3y+2z=βˆ’15β‡’βˆ’3(1)+2z=βˆ’15β‡’2z=βˆ’12β‡’z=βˆ’6{ -3y + 2z = -15 \Rightarrow -3(1) + 2z = -15 \Rightarrow 2z = -12 \Rightarrow z = -6 }

Now substitute y = 1 and z = -6 into the first original equation:

βˆ’2xβˆ’4(1)βˆ’5(βˆ’6)=20β‡’βˆ’2xβˆ’4+30=20β‡’βˆ’2x+26=20β‡’βˆ’2x=βˆ’6β‡’x=3{ -2x - 4(1) - 5(-6) = 20 \Rightarrow -2x - 4 + 30 = 20 \Rightarrow -2x + 26 = 20 \Rightarrow -2x = -6 \Rightarrow x = 3 }

So, now we have x = 3, y = 1, and z = -6.

Now, let's calculate (xyz)Β²:

(xyz)2=(3β‹…1β‹…βˆ’6)2=(βˆ’18)2=324{ (xyz)^2 = (3 \cdot 1 \cdot -6)^2 = (-18)^2 = 324 }

Since 324 isn't among the provided choices, let us reexamine the arithmetic and look for any prior mistakes.

Let’s use the values x = 3, y = 1, z = -6 and check in the original equations:

Equation 1: βˆ’2(3)βˆ’4(1)βˆ’5(βˆ’6)=βˆ’6βˆ’4+30=20βœ“{ -2(3) - 4(1) - 5(-6) = -6 - 4 + 30 = 20 \quad \checkmark } Equation 2: βˆ’6(3)βˆ’2(1)βˆ’3(βˆ’6)=βˆ’18βˆ’2+18=βˆ’2βœ“{ -6(3) - 2(1) - 3(-6) = -18 - 2 + 18 = -2 \quad \checkmark } Equation 3: 6(3)βˆ’1+5(βˆ’6)=18βˆ’1βˆ’30=βˆ’13βœ“{ 6(3) - 1 + 5(-6) = 18 - 1 - 30 = -13 \quad \checkmark } Thus x = 3, y = 1, z = -6 is the correct solution to the system of equations.

(xyz)2=(3β‹…1β‹…βˆ’6)2=(βˆ’18)2=324{ (xyz)^2 = (3 \cdot 1 \cdot -6)^2 = (-18)^2 = 324 }

There seems to be no other mistake. Therefore, none of the multiple-choice options are correct.

Final Answer

Thus, (xyz)2=324{ (xyz)^2 = 324 }.

Given the options provided, it seems there may have been a slight error in the provided answer choices. Based on our calculations, the correct answer should be 324.

Keep practicing, and you'll nail these problems in no time! Happy math-ing!